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Saipem 7000 marks the start of offshore work on
the Neart na Gaoithe (NnG) wind farm, August 2020

Owned by EDF Renewables and ESB
*15 km off the Fife coast
54 turbines

2023
*Power 375,000 homes
*450 megawatts

https://ocean-energyresources.com/



Zero Emission Train Project H.A

Hydrogen
Accelerator

https://www.scottish-enterprise-mediacentre.com/news/hydrogen-train-project-looks-back-to-the-
future



https://www.scottish-enterprise-mediacentre.com/news/hydrogen-train-project-looks-back-to-the-future

Hydrogen Fuel Cell Electric Trains
Our decarbonised raill network in Scotland, 2035

- Electrified network; some 1,622 of single
track kilometres to be electrified. Sections of —
route may include discontinuous 5
electrification and the use of battery/electric ==
bi mode trains, e.g the Fife Circle. : S

- Alternative traction — transition solution(i.e.
the use of alternative technology prior to
electrification).

- Alternative traction — permanent solution (i.e.
the use of battery and/or Hydrogen traction).

Rall Decarbonisation Plan launched at the end of July 2020. Decarbonisation of the rail network
by 2035. First market engagement by September 2020



_ Energy Storage Technologies

100000
10000
O Wh/l

B Wh/kg
1000
100
10
1

Gé’ (/V (,O @[/7 (/ iy 4/{ 77 Ny //Q . )
e o TKA f&e /be[‘;@@/ Clo "o “Chy b




¥ Alternative hydrogen carriers

 AmMmonia

* Methanol

* Methane

» Hydrocarbons
* Diesel



¥ Ammonia

 Ammonia Is one of the most important industrial chemicals
* Widely used in agriculture as a fertiliser for food production.

» Conventionally ammonia Is produced at very large scale
utilising fossil energy sources

» CostviaH, SMR is very low, even lower than bulk hydrogen

» Historically produced utilising hydrogen produced from Hydro
power.




HISTORICAL LARGE SCALE PLANTS
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Rjukan, Norway; 1927 - 1970 S Glomfjord, Norway; 1953 — 1991

« Two largest electrolyser plants worldwide

« Capacity: 30 000 Nm?®/h each

* Energy consumption: approximately 135 MW each
« Supplied by renewable hydro power

09.04.2015 11
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Main applications
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Other

\s%

Explosives Direct Application

Compressor ([

> NHy+ e | NH; +
Ny, H, —D:\TA ‘ unreacted | unreacted Fib
feed gases &N N,, H, | N H, iores
e e 3 T N | Hotwater out . i
s 5 —=_ Ammonium Sulfate  Fy7y e
Catalyst beds = = e
@ [ _—
Feed gases o o ‘ Cond .
prewarmed by g g ondenser M|xed 8%
heat of reaction - - NHs
Cold water in '
Heater &}4 ke Ammonium Hydrogen =~ '
it Phosphate _
Jjj compressor Ammonium Nitrate

Urea

Refrigerated unit

High temperatures (400-500 ° C) N _ _1
High pressures (150-200 atm) Nz(g) N 3H2(g) T 2NH3 (g) AH = =92kl mol

Alternative energy-saving pathway?



B Wind and ammonia
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http://freedomfertilizer.com/




Protonic ceramic conductors

With H, proton source : :
2F Competing mechanisms

N,+ 6H*+ 6e" - 2NH, . s«
Hf +e+*=*H (1)

N, +*=*N, (2)

3H, - 6H"+ be
With H,O proton source

N,+ 6H*+ 6" > 2NH,

Ht + e+ *N, 2 *N,H  (3)

Ht+e+*H=H, +* (4)

3H,0 -» 3/20,+ 6H*+ 6e-



B Electrocatalysis
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Vojvodic, A.; Ngrskov, J. K. Natl. Sci. Rev. 2015, 2, 140-143.




B Solid Oxide Electrolysis
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B The 3 modes of HTSE

* Thermoneutral:
» Joule heating = heat consumed by the endothermic reaction
 Electrical-to-chemical efficiency = 100 %

» Exothermic:
» Joule heating > heat consumed by the endothermic reaction
 Electrical-to-chemical efficiency < 100 %

* Endothermic:
» Joule heating < heat consumed by the endothermic reaction
» External heat source required
 Electrical-to-chemical efficiency > 100 %



Switching on electrocatalytic
activity in solid oxide cells

Electrochemical vs Chemical Reduction

L&y 43C80 37N1g 06 T15.9403.,

J-H. Myung, D. Neagu, DN. Miller & JTS. Irvine,
Nature, 2016. 537, 528-531
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n in 5%H,



5% H,/N,
(PO, ~ 1019 atm)

 —

50% H,O/N,
(pO, ~ 103> atm)




Reduction by H, at
900 <T for 20 h

Figure
1(e)

Chemical
reduction

Compared to

Figure
1(f)

Electrochemical
Switching

Under 50% H,O/N,,
900 C, 150 s




d Time electrochemical switching (s)
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5% H,/N,
(PO, ~ 1019 atm)

 —

50% H,O/N,
(pO, ~ 103> atm)




900 °C
850 °C
800 °C
750 °C
700 °C

Current Density (A cm"?)

Solid oxide cell based on electrochemical switching.
reversible cell mode in 50% H,O/H,. 80 um thick
electrolyte



a H, Production (mL min’’ cm'z)
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Solid oxide cell based on electrochemical switching. Current-voltage
curves (square symbols) electrolysis mode under 50% H,O/N,, also
showing equivalent H, production assuming 100% Faradaic efficiency



conduction

Energy demand for CO, Electrolysis
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Advantage of high temperature CO, electrolysis

Direct CO, Electrolysis
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B Danish 2050 model
Green gas system linked to SOFCs and SOECs

" Increased use of methane and “green” gases

= SOEC can produce methane to the gas system
when electricity prices are low

= Possibllities for storage of heat and gas help
prevent overflow and deficiency in the electricity
system

= High prices: SOFC production of electricity and &L 4
heat *

= Low prices: SOEC production of methane
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