IET/CSEE Workshop

Offshore Wind Experiences in Northern Europe and Opportunities in China

Peter Tavner

Emeritus Professor, Durham University

- European Academy of Wind Energy Science Award
- Advisory Board Chair UKRI Offshore Wind Prosperity Partnership, HOME & FEMM Projects
- Former President European Academy of Wind Energy
- Former Non-Exec Director of NaREC, now ORE Catapult

TPJ2

Antoine de Saint Exupery, French pilot, writer & poet (d1944)

"The machine does not isolate man from the great problems of nature but plunges him more deeply into them "

TPJ2 TAVNER, PETER J., 20/02/2021

Overview

- Background to causes & effects of wind turbine unreliability & Capacity Factor;
- Understand basic reliability information;
- Examples of current WT reliability data & how it is changing with time:
 - Onshore;
 - Offshore Fixed;
 - Offshore Floating.
- Compare China & Europe wind experience
- What's needed to make Offshore Fixed & Floating more reliable and more successful.

Wind Reliability Transitions: Onshore-Offshore-Offshore Floating

1980 California Wind Rush, Onshore, USA

Floating Offshore WT, 3 types

Musial, W, Beiter, P, Spitsen, P, Nunemaker, J, Gevorgian, V (2018) Off-shore wind technologies market report, US Department of Energy, USA.

Growth of Onshore & Offshore Wind

4

Wind Turbine Power Curves

Wind Turbine Operation-18 days

WT rating= 1.67MW Average output=48okW Capacity Factor =480/1670=29%

Wind Turbulence & WT Data

van der Hoeven, I (1957) Power spectrum of horizontal wind speed in the frequency range from 0.0007 to 900 cycles per hour. Journal of Atmospheric Sciences, **14**(2): 160-164.

Lavely, A W (2017) Effects of Daytime Atmospheric Boundary Layer Turbulence on the Generation of Non-steady Wind Turbine Loadings and Predictive Accuracy of Lower Order Models, , Doctoral Thesis, Pennsylvania State University. Nandi, T N, Herrig, A, Brasseur, J G (2017) Non-steady wind turbine response to daytime atmospheric turbulence. Phil. Trans. R. Soc. Lond A; 375(2091).

Offshore Wind Turbulence in Context

WT Failure Rates λ (1/MTBF) & Down-time MTTR (1/ μ), Trends against different variables

Cevasco, D,Koukoura, S, Kolios, A.J (2021) Reliability, availability, maintainability data review for the identification of trends in off-shore wind energy applications, *Renewable and Sustainable Energy Reviews*, 136, Feb, 110414

TPJ1 TAVNER, PETER J., 12/02/2021

Capacity Factor, UK Onshore & Offshore Wind Experience

Crabtree, C J, Zappala['], D, Hogg, S I (2015) Wind energy: UK experiences and off-shore operational challenges, Proc IMechE Part A: J Power and Energy; 0(0): 1–20

Offshore WT Fault Monitoring in Context

Example of UK Offshore Monitoring Issues London Array, Offshore Wind Farm, UK Round 2 175 x 3.6 MW WTs, 630 MW

- 175 WTs, 400 I/O per WT;
- Total Wind Farm I/O > 80000 items/10min
- Onshore 75% of faults cause 5 % of downtime;
- Offshore 75% of small faults become critical;
- Alarm rates at onshore Ops are overloaded;
- Consuming O&M time & money.

Best Offshore Wind, Fixed or Floating

- Long Onshore Wind experience has proven turbines are reliable;
- Early Offshore Wind experience has proven fixed Offshore Turbines;
- Offshore Wind Capacity Factors are better than Onshore;
- Offshore Wind CAPEX/MW/turbine falls with increased MW rating;
- Higher rated Floating Offshore Wind Turbines will have lower CAPEX/MW/turbine because:
 - Cost savings on unit numbers;
 - Build Floating Offshore Wind turbines onshore;
 - Float them out to avoid high offshore erection costs.
- Need Offshore Fixed & Floating to be more reliable & reduce OPEX, therefore become more successful.

China Wind Conditions in Yellow, East & South Seas

China Offshore Wind, Fixed or Floating Transitions

Conclusions

- Offshore wind has proved its capability but improved reliability needed, differing subassemblies have high failure rates but are consistent & known;
- Failure rate, $\lambda = 1/MTBF$, generally constant;
- Downtime, *MTTR=1/μ*, variable and
 OPEX cost very important for fixed & floating offshore wind;
- Capacity Factor, C, consistently better offshore than onshore floating offshore wind is the best;
- However, availability, A, worse offshore than onshore because of repair mobilisations;

• Over-instrumentation a major problem for reducing A;

- Too much data, too little analysis & planning;
- Turn WT Data into Wind Farm Data, gives better offshore WT availability & lower CoE:
- More efficient maintenance schedules reduce offshore cost & deliver lower cost/MWh floating wind farms.

• Recommendations for China:

- Move towards floating offshore in Yellow, East & South China Seas;
- Improve *MTTR*.

Thank you

- 1. Tavner, P J, Xiang, J P, Spinato, F (2007) Reliability analysis for wind turbines, *Wind Energy*, **10**(1): 1–18;
- 2.Spinato, F, Tavner, P J, van Bussel, G J W, Koutoulakos, E (2009) Reliability of wind turbine subassemblies, *IET Renew Power Gen*, **3**(4): 387-401;
- 3. Faulstich, S, Hahn, B, Tavner, P J (2011) Wind turbine downtime and its importance for offshore deployment, *Wind Energy* **14**(3): 327-337;
- 4.Tavner, P J (2012) Offshore Wind Farms, Availability & Maintenance, IET Energy, UK, 2nd Ed due end 2021;
- 5. Musial, W, Beiter, P, Spitsen, P, Nunemaker, J, Gevorgian, V (2018) Offshore wind technologies market report, *US Department of Energy*, USA.
- 6.Cevasco, D,Koukoura, S, Kolios, A.J (2021) Reliability, availability, maintainability data review for the identification of trends in off-shore wind energy applications, *Renewable and Sustainable Energy Reviews*, 136, Feb, 110414